

Identities & Permission-Groups for Blockchains

Overview of MIT ChainAnchor Project

Thomas Hardjono & Alex (Sandy) Pentland

MIT Connection Science

February 2016

Current "Identities" in Bitcoin

- Entities known only by their public-key
- Self-created ("self-asserted")
- Entities addressable only within Bitcoin
- Purposed solely for currency transactions

Digital Identities Today

- Issued by Identity Providers (IdP)
- Addressable & routable globally (cf. DNS)
- Primary "identity" for accessing services

Attributes & Attribute Authorities

Challenge: Which Alice & Which Attributes

How to:

- "Link" identities across layers - preserving privacy
- Option to remain anonymous but verifiable
- Option to disclose an anonymous identity – without affecting other owned identities
- Bind attributes to anonymous identity with verifiable truthfulness

ChainAnchor: Permission Groups

- Permission Group = Logical group of entities sharing a common blockchain
- Group Owner initially knows true identity of members
- Each member is given unique secret keying material & parameters
- Each member "blinds" keying material and then operates anonymously

Proving Membership (Anonymously)

- Member switches to anonymous & ``blinds'' secret keying material
- Member runs Zero-Knowledge Proof (ZKP) protocol with Verifier
- Member generates public-key pair, and Verifier adds pubkey to member's list
- From Step-2 onwards, user is anonymous to Group-Owner & Verifier

Filtering for Members' Transactions

- Participating miner chooses to process only members' transactions
- Miner looks-up anon list of members' public-keys prior to processing
- Miner can also remain anonymous by running ZKP protocol with Verifier
- Miner gets higher reward for participating payout from Group-Owner

ChainAnchor: Use-Cases

Use Case #1: Competing Entities Sharing a Common Ledger

- ChainAnchor Group implements membership to shared blockchain
- Competing entities remain anonymous to one another
- Optional disclosure of identity when challenged (e.g. regulatory needs)
- Read/Write or Read-only access to shared blockchain

Use Case #2: Attribute Groups

- Membership expresses possession of attributes (e.g. "Over 18" group)
- User must show evidence of eligibility (e.g. driver's license)
- Evidence issued by external Attribute Authority
- User switches to anonymous mode after obtaining secret params.

Use-Case #3: Certificate for Anonymous Identity

- Verifier becomes a Certificate Authority (or Registration Authority)
- Certificate contain anonymous identity & transaction public-key
- Certificate, identity & public-key usable outside blockchain

Use-Case #4: "AML-Friendly" Currency Circulation

- ChainAnchor group implements controls over currency circulation
- Group Owner disburses currency to members only
- Members can transact only within group
- Spending limit per transaction (per time duration)
- Miners verify membership of originator & recipient
 - TX with unknown originator/recipient are dropped
 - TX which violate spending limit are dropped
- Option to disclosed pubkey/address upon legal challenge – but without affecting other pubkeys
 - Property of ZKP protocol
- Can be "overlayed" atop Bitcoin

Contact

hardjono@media.mit.edu sandy@media.mit.edu

