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Abstract—In this paper we address the issue of retaining
user anonymity within a permissioned blockchain. We present
the ChainAnchor architecture that adds an identity and
privacy-preserving layer above the blockchain, either the private
blockchain or the public Blockchain in Bitcoin. ChainAnchor
adds an anonymous identity verification step such that anyone
can read and verify transactions from the blockchain but only
anonymous verified identities can have transactions processed.
We refer to such blockchains as semi-permissioned blockchains.
ChainAnchor builds upon and makes use of the zero knowledge
proof mechanisms of the EPID scheme, which has the advantage
of an optional cryptographic binding to a TPM tamper-resistant
hardware. The use of tamper-resistant hardware provides a
significant increase in security, not only for identity-related
information but also for the protection of keys used by Bitcoin
wallet applications.

Index terms: Cryptography, Identity Management, Anonymity,
Digital Currency.

I. INTRODUCTION: IDENTITIES AND ANONYMITY IN
PERMISSIONED BLOCKCHAINS

The rise to prominence of the Bitcoin decentralized digital
currency system [1] has introduced new interest in blockchains
as a infrastructure mechanism for maintaining a shared ledger.
The success of the Blockchain distributed ledger within Bit-
coin as a permissionless and public blockchain system has
created interest in the possibility of permissioned and pri-
vate blockchains. Furthermore, the decentralized processing of
transactions in Bitcoin has raised interest in the possibility of
a “decentralized digital identity” system for public and private
blockchains.

In considering permissioned private blockchains, there is
a risk that users of the system may loose the degree of
anonymity which they enjoy within Bitcoin as a permission-
less system. In the Bitcoin system a user obtains anonymity
because he or she generates the public-key pair used to transact
in Bitcoin. Only the user knows his/her private-key. When
designing permissioned blockchains, there is the temptation
to simply link the user’s Internet identity (from outside the
blockchain) to the user’s public-key for the purposes of
enforcing access control over the private blockchain. However,
this act of linking may result in the disclosure of the true
identity of the user holding the public-key. In turn, this may
limit the social acceptability of permissioned blockchains and
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Fig. 1. ChainAnchor Layers

limit their adoption to only private organizations or closed
consortiums.

In this paper we address the issue of retaining user
anonymity within permissioned blockchains. We present the
ChainAnchor1 architecture that adds an identity and privacy-
preserving layer above the blockchains. ChainAnchor adds
an anonymous identity verification step using the EPID zero-
knowledge scheme [2] to a permissioned blockchain that limits
access to the blockchain only to verified members.

As a deployment mode of ChainAnchor, we introduce the
notion of semi-permissioned blockchains where only mem-
bers will have their transactions processed, but where these
transactions can be publicly validated. We use this term to
distinguish it from “hybrid blockchains” – which refers to a
business model [3].

Semi-permissioned blockchains are useful in a number of
deployment scenarios, such as within a consortium of com-
peting members who need to share a common ledger but who

1The name “Chain Anchor” is derived from the analogous concept of trust
anchors in the TAMP protocol (RFC5934).
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need to retain anonymity when transacting to the ledger in
order to maintain their competitive edge.

In developing the ChainAnchor architecture we seek to
fulfill the following objectives:

• Anonymity of users: Users achieve the same degree of
anonymity as is currently achieved in the Bitcoin system.

• Anonymous permission verifiability: Verification of
a User or Miner leaves them in the same degree of
anonymity as in the Bitcoin system.

• Permissions Enforcement: Only anonymous Users who
have obtained permission will have their transactions
processed. Similarly, only Miners who have obtained
permission will have their work remunerated.

• Revocation of transaction keys: A verified anonymous
User whose private-key has been lost or stolen can
anonymously request his/her private-key be placed on a
“revoked-keys” list.

• Functional independence: The permissions mechanism
must be independent from the blockchain (including the
current Blockchain) and does not alter its operation.

• No change to current Bitcoin keys: The current Bitcoin
keys and addresses remain unchanged.

A note regarding terminology: in this paper we use the
current public permissionless Blockchain (capital “B”) in the
Bitcoin system as the backdrop for our discussions regarding
ChainAnchor, even though ChainAnchor is aimed at per-
missioned (private) blockchain. This is because the current
Blockchain is the only operational blockchain system that has
achieved the scale of several thousand nodes in a true peer-
to-peer (P2P) network topology. The Bitcoin system and its
Blockchain has received much attention, and therefore well
understood compared to other proposed blockchain systems.

As such, designing ChainAnchor following the operational
model of the public permissionless Blockchain will allow
ChainAnchor to be used more readily in the more restricted
permissioned (private) blockchain systems – which may have
a different transaction/block format and may have different
consensus algorithms. Hence our functional independence
design requirement and our use of the term transaction keys
generically to refer to public-key pair that the user self-issues
and employs.

The rest of the paper is organized as follows. Section II
provides some background to the EPID and DAA schemes
that underlie ChainAnchor. Readers familiar with EPID and
DAA can skip this section.

In Section III we present the proposed ChainAnchor archi-
tecture and protocols in detail. The cryptographic protocols
are summarized in the Appendix. As such, it is useful to read
Section III in conjunction with the Appendix.

Section IV presents two deployment modes of ChainAn-
chor, namely the private permissioned deployment mode and
the semi-permissioned (overlay) deployment mode. We also
briefly discuss some possible remuneration models for Miner
who participate in ChainAnchor.

The current paper seeks to be readable to a broad audience
and to focus on deployment aspects in the context of services.
As such it does not cover in-depth the cryptography behind
EPID and DAA, which has already been well treated else-
where. Here we focus instead on the functions and protocols
above the EPID layer.

Readers seeking more details on the EPID scheme will find
a short summary in the Appendix which follows the notational
convention of [2]. The current paper focuses on an RSA-based
EPID scheme based on the Camenisch-Lysyanskaya signature
scheme [4] and the DAA scheme of Brickell, Camenisch and
Chen [5]. Readers are directed to the authoritative papers
of [5] and [2] for an in-depth discussion. An EPID scheme
using bilinear pairings can be found in [6]. It is based on the
Boneh, Boyen and Schacham group signature scheme [7] and
the Boneh-Schacham group signature scheme [8].

II. BACKGROUND: EPID AND DAA

We propose to build the ChainAnchor system for permis-
sioned blockchains using the zero knowledge proof proto-
cols and mechanisms of the Enhanced Privacy ID (EPID)
scheme [2]. This scheme itself is an extension of the Direct
Anonymous Attestation protocol (DAA) [5] for user privacy in
the TPMv1.2 hardware [9].

A. DAA and the Trusted Platform Module

The DAA protocol was developed initially to solve a
requirement for privacy within the Trusted Platform Module
(TPM) hardware chip [9]. The TPM is the security hardware
that was developed by the PC industry starting from 1999
within the Trusted Computing Group (TCG) consortium for
the purpose of providing low-cost tamper resistant crypto-
graphic hardware for the worldwide PC market. To date,
several hundred million TPMs (version 1.2) have been manu-
factured and have shipped within PC computers worldwide.

The design of the TPM followed three (3) important prin-
ciples of trustworthy computing [10]:
• Unambiguous identification: A given TPM instance must

be unambiguously identifiable.
• Operates unhindered: A given TPM instance must be able

to operate unhindered.
• Truthful attestations: A given TPM must be able to

correctly report its internal status truthfully.
Although the TPMv1.2 hardware possesses a number of

advanced security and privacy-enhancing features, currently
the TPM is most commonly used to store cryptographic keys
for files/folder encryption (e.g. Microsoft’s BitLocker [11]) or
for keys to access self-encrypting disk drives [12]. Thus it
is not an exaggeration to state that much of the TPMv1.2
advanced functions today remain underutilized. Part of the
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reason is the current lack of supporting infrastructure for
deploying these advanced features (see [13]–[15]).

The DAA protocol was a feature built into the TPM version
1.2 as a privacy mechanism to prevent the tracking of TPM
hardwares. Each TPM is unambiguously identified by a public
key pair (referred to as the Endorsement Key (EK) pair). The
EK private key resides inside the TPM hardware and cannot be
read-out of the TPM. The EK public key is placed within an
EK-Certificate structure as a way to convey the manufacturing
provenance of the TPM hardware. However, since the EK-
Certificate (containing EK public key) is accessible outside
the TPM, there was concern about the possibility of tracking
TPMs based on the EK public key.

In order to counter this potential privacy weakness, the DAA
scheme was added in TPMv1.2 by the Trusted Computing
Group to prevent an external entity from tracking a TPM. At
the same time the DAA scheme allowed any external party to
gain assurance about the provenance of a given TPM hardware
– that the TPM is a genuine hardware produced by a legitimate
manufacturer that conforms to the TCG specifications.

In the DAA scheme, an entity called the Issuer would create
a group public key that is shared across many TPMs. Each
TPM, however, would obtain a unique membership private
key from the Issuer. The notion of a “group” here refers to
a group of legitimate TPM chips, manufactured by a known
manufacturer compliant to the TPM specifications.

To “authenticate” as a group member – namely to prove
that a TPM is legitimate – the TPM generates a signature
using its membership private key such that the signature can
be verified by a Verifier entity using the group public key.
Essentially, the DAA scheme allows a verifier to know that
a TPM was produced by a manufacturer, but not learn about
the identity of the TPM (i.e. which TPM created the DAA
signature).

B. Why EPID and DAA: Motivations

There are a number of reasons why we believe EPID (and
the DAA on which it is built) offers an attractive direction for
anonymous verifiable identities for permissioned blockchains
and other Internet related applications:
• Substantial deployment base: The DAA protocol is a

core part of the TPMv1.2 standard specification, and
supported by the majority of industry PC OEMs. Today
several hundred million TPMs (Version 1.2) are already
in the field within PC computers and other devices.

• Standards Status: The EPID scheme reached ISO
International Standard status in 2013 (see [16] and [17]).

• Option to bind to tamper-resistant hardware: The EPID
protocol can be deployed without TPMv1.2 hardware,
with the option to add and enable a tamper-resistant
TPM at a later stage. This option may be attractive to
Identity Providers who may wish to deploy ChainAnchor
in a phased approach. The TPM hardware can internally

generate a Bitcoin public key pair, and sign the Bitcoin
transactions using these on-board keys. If the User
loses his/her device with the TPM, the Bitcoin currency
will be irretrievable, but will be secure from theft (i.e.
currency destroyed).

• Backup of hardware-based keys: The hardware also offers
a Backup-and-Migration protocol (see [18] and [19])
that allows sealing of keys (including user’s keys) for
off-device secure backups. As such, it provides a strong
mechanism for users to “backup their currency” (i.e.
Bitcoin private keys). The TPMv1.2 backup protocol will
only restore the sealed keys to the same TPM hardware.
The TPMv1.2 migration protocol will only move/transfer
the sealed keys to a new TPM hardware that has
undergone a take-ownership by the same user/owner.

EPID is not the only anonymous identity protocol available
today. The work of Brickell et al. [5] introduced the first RSA-
based DAA protocol in 2004. A related anonymity protocol
called Idemix [20] employs the same RSA-based anonymous
credential scheme as the DAA protocol. However, Idemix
cannot be used with the TPMv1.2 hardware (or the new
TPMv2.0 hardware).

Another related protocol called U-Prove [21] can be
integrated into the TPM2.0 hardware (see [22]). However, the
U-Prove protocol has the drawback that it is not multi-show
unlinkable [23], which means that a U-Prove token may only
be used once in order to remain unlinkable.

III. CHAINANCHOR ARCHITECTURE

Our proposed ChainAnchor system makes use of the zero-
knowledge proof protocol of EPID to allow a User to prove to
a Permissions Verifier entity that the User is a member of a Per-
missioned Group and therefore has the privilege to have his/her
transactions processed and be added to the permissioned-
blockchain. We refer to this zero-knowledge proof as the
anonymous identity verification proof. The permissioned-
group is created by a Permissions Issuer entity on behalf of
the group Owner (i.er. an organization or person).

In the anonymous identity verification, the User has to also
cryptographically “bind” his or her transaction public-key to
the zero-knowledge proof sent to Permissions Verifier. This
results in that transaction public-key being recognized as a
valid “identity” that has obtained permission to transact on
the blockchain. The Permissions Verifier adds the approved
transaction public-key to a Verified Identities Database op-
erated by the the Permissions Verifier. Similarly, a Miner
who wishes to participate the permissioned-blockchain must
perform the same anonymous identity verification process with
the Permissions Verifier.

Depending on the mode of operation (see Section ??) the
Verified Identities Database can be private or be publicly
readable. The method to read from the database is out of scope
here, though there is considerable deployment experience for
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Fig. 2. Overview of ChainAnchor interactions

such databases in the form of CRL-databases in X509-based
PKI [24] using protocols such as OCSP [25].

Note that the User can bind as many self-asserted trans-
action public-keys to the zero-knowledge proof sent to Per-
missions Verifier as needed (either through submitting in
batches, or submitting individual public-key one at a time).
This is consistent to the design and operations of Bitcoin and
PGP [26] where a User can use any number of self-issued
public key pairs.

ChainAnchor adds an additional simple step to the process-
ing (mining) of a transaction performed by a Miner. Prior
to mining a transaction signed by a given transaction public-
key, the mining node needs to look-up the Verified Identities
Database to check that the transaction public-key is listed in
that database. That is, it needs to check that User’s public key
is “permissioned” to transact on the blockchain.

Similar to EPID and related schemes, the Permissions
Verifier is assumed not to be in collusion with the Permis-
sions Issuer, and both are expected to be a separate entities
(physically, operationally and legally).

In the following we describe the entities in the ChainAnchor
system and the steps of ChainAnchor.

A. Entities in the System

The set of entities in ChainAnchor does not depart sig-
nificantly from the those in EPID and DAA. However, in

order for the EPID zero-knowledge proof protocol to be
deployable within permisisoned-blockchains we propose to
converge the roles in EPID with those found Identity Provider
(IdP) services.

In ChainAnchor, we define transactions and blocks of trans-
actions as follows:
• Permisisoned-Transaction:

We define a (fully) permissioned-transaction to be one
in which the originator and recipient of the transaction
are members of the same permissioned-group.

• Permisisoned-Block:
We define a permissioned-block to be a block of
permissioned-transactions belonging to the same
permissioned-group.

Figure 2 summarizes the entities and the interactions among
the entities:
• Identity Provider and Permissions Issuer (IdP-PI):

ChainAnchor merges the Permissions Issuer function
with the Identity Provider function to reflect the need,
among others, for addressability of the anonymous User
who holds the self-asserted transaction public-key.

That is, the Identity Provider function will need the
ability to communicate out-of-band with the anonymous
User outside the blockchain system in order to engage
the User in the ChainAnchor-related protocols (e.g. noti-
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fying a User of a suspected compromise of their private
keys, group discovery, etc). The IdP-PI also acts as the
revocation manager for EPID-related revocation variants.

The IdP-PI creates a Permissioned Group that imple-
ments the permissioned blockchain on behalf of an owner.
For a given permissioned-group, there is one (and only
one) IdP-PI.

• Permissions Verifier (IdP-PV):
The Permissions Verifier is the entity that performs the
anonymous identity verification of a given a User by
running the zero knowledge proof protocol with that User.

In ChainAnchor the Permissions Verifier function is also
operated by an Identity Provider that must be distinct
from the Permissions Issuer. This ensures both IdP-PI
and IdP-PV entities remain honest. Indeed, this is a core
design assumption of the DAA feature in the TPMv1.2
hardware.

The Permissions Verifier maintains the Verified Identi-
ties Database containing all the transaction public-keys
belonging to the anonymous Users who have successfully
undergone the ChainAnchor anonymous identity verifi-
cation. The database only contains transaction public-
keys and the time-stamp of the successful zero-knowledge
proof protocol completion. No other identifying informa-
tion is stored by the Permissions Verifier.
For each permissioned-group corresponding to a permis-

sioned blockchain there is one distinct Verified Identities
Database. The Permissions Issuer has read access into the
database at the IdP-PV, but not write-access. This is to
maintain the business integrity of the IdP-PV as a service
provider.

The IdP-PV together with the IdP-PI realize the
permissioned-group that implements the permissioned
blockchain. For a given permissioned-group, there can
be multiple independent IdP-PV entities (although only
one IdP-PI).

• Miner:
The Miner in ChainAnchor is entity that mines for a
permissioned-block and records it on the permissioned
blockchain. When reading from the pool of unconfirmed
transactions, the Miner composes a block of transactions
referred to as the “candidate” block. To compose a
block of permissioned-transactions, for each unconfirmed
transaction the Miner must check that the public-keys of
the transaction are in the Verified Identities Database.

Similar to the User, a Miner wishing to participate in a
given permissioned-group must perform the anonymous
identity verification with the Permissions Verifier (IdP-
PV) and have the Miner’s transaction public-key added
to the database for the permissioned-group.

This is to ensure that the Miner can have query-access
to the database of the group, and that the Miner can later

claim the reward for mining permissioned-blocks of the
group. Section ?? discusses the modes of operation of
ChainAnchor and the possible remuneration models.

• User:
The User in ChainAnchor has the same function as
the originator/recipient of a transaction in Bitcoin. The
User can have any number of self-issued transaction
public-key pairs. However, in order to participate in a
ChainAnchor permissioned-group the User must perform
the anonymous identity verification to the Permissions
Verifier (IdP-PV) and have its transaction public-key
added by the IdP-PV to the Verified Identities Database
for that permissioned-group.

• Owner:
Although not shown explicitly in Figure 2, a
permissioned-group must be created and owned by
an organization or individual. We refer to this entity
or person as the Owner of a permissioned-group that
implements the permissioned blockchain.

In initiating the creation of a permissioned-group
to implement a permissioned blockchain, the Owner
employs the services of the IdP-PI. Although IdP-PI and
IdP-PV are service providers that together implements
this permissioned-group, only the IdP-PI knows the real
identity of the Owner as a customer.

B. Keys in the System

The ChainAnchor system uses a number of cryptographic
keys – beyond the User’s transaction public-key pair. These
keys are summarized as follows:
• Membership Issuing Private Key:

This key is generated by the IdP-PI for each
permissioned-group that the IdP-PI establishes. This
key is unique for each permissioned-group. This key is
used by the IdP-PI in enrolling or adding new Users to
the permissioned-group. We denote this key as KMIPK .

• Membership Verification Public Key:
This key is generated by the IdP-PI and is delivered over
a secure channel to the Permissions Verifier entity (IdP-
PV). This key is unique for each permissioned-group.
The key allows the IdP-PV to validate the membership
of a User (in the corresponding permissioned-group)
through the zero knowledge proof protocol that the IdP-
PV executes with the User. We denote the Membership
Verification Public Key as KMV PK .

• User’s Transaction Public-Key Pair:
This is the transaction public-key pair that the User
employs to transact on the permissioned blockchain.
For simplicity and ease of comparison with the current
Bitcoin public-key pairs, we denote the User’s transaction
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public-key pair as (Kbitcoin,K
−1
bitcoin), with the public

key being Kbitcoin.

• Long Term Pair-wise Shared Key (PSK):
When a User (Miner) executes the zero knowledge proof
protocol with the Permissions Verifier entity, one by-
product of a successful proof is the establishment of a
pairwise shared key (PSK) between the User (Miner) and
the IdP-PV. This key is a symmetric key.

We denote a PSK shared between a User and the IdP-
PV as kU,PV , while the PSK shared between a Miner and
the IdP-PV as kM,PV .

The long-term PSK shared between the User (Miner)
and the IdP-PV is used to provide the User (Miner) with
an authenticated read-access to the Verified Identities
Database at the IdP-PV. The authenticated read-access
is done through proof of possession (POP) of the shared
symmetric key. Note that session-keys derived from the
long-term PSK may be used instead, but this topic is
outside the scope of discussion of the current work.

• IdP-PI and IdP-PV Certificates:
These are traditional public-key pairs and X509 certifi-
cates that identify the entity that posses them. Being
service providers, the IdP-PI and IdP-PV are assumed to
have X509 certificates. Users may not have a certificate
but are assumed to have personal public-key pair. These
keys are denotes as follows (in the notation of [2]):

– IdP-PI public-key pair: We denote the public key
pair of the IdP-PI as (KPI ,K

−1
PI ) with the public

key being KPI .

– IdP-PV public-key pair: Similarly, we denote the
public key pair of the IdP-PV as (KPV ,K

−1
PV ) with

the public key being KPV .

– User’s personal public-key pair: We denote
the personal public-key pair of the User as
(Kuser,K

−1
user) with the public key being Kuser.

The User must never associate his/her personal
public-key pair with his/her transaction (Bitcoin)
public-key pair

C. ChainAnchor Protocol Steps

In the following, we describe the steps of the ChainAnchor
design (see Figure 2).

[Step 0] IdP-PI Establishes Permissioned Group:
This step is not shown in Figure 2. Depending on the busi-

ness model of the IdP-PI and IdP-PV, the IdP-PI can establish
permissioned-group as fee-paying service to customers (e.g.
Enterprises).

As part of the creation of a permissioned-group, the IdP-
PI generates a number parameters that are unique to the

permissioned-group and are used to create two important keys
related to the function of the IdP-PI as the Permissions Issuer:
• Membership Verification Public Key: KMV PK

The IdP-PI creates this key to be used later by the
Permissions Verifier entity (IdP-PV) when engaging
the User in the zero-knowledge proofs protocol. (See
Equation 2 in Appendix A).

• Membership Issuing Private Key: KMIPK

The IdP-PI creates this key in order to issue unique keys
to Users in the system that allows the User later to prove
membership to the Permissions Verifier entity (IdP-PV).
(See Equation 3 in Appendix A). This issuing private key
is kept secret by the IdP-PI.

[Step 1] IdP-PI Shares Verification Public Key with IdP-PV:
In this step, the IdP-PI makes known the Membership Verifi-

cation Public Key (KMV PK) to the Permissions Verifier (IdP-
PV). We assume a secure channel with mutual authentication
is used between the IdP-PI and IdP-PV entities.

[Step 2] User Authenticates & Requests Membership
A User obtains permission to transact on the permissioned

blockchain by requesting membership to the permissioned-
group that implements the permissioned blockchain. The User
must first authenticate itself to the IdP-PI (namely the Identity
Provider endpoint of the IdP-PI) and obtain authorization
to join the the permissioned-group. The method used to
authenticate is external to the blockchain and is outside the
scope of the current paper.

At this point in the ChainAnchor protocol the User is not
anonymous to the IdP-PI, and the IdP-PI knows the user (e.g.
has an account at the IdP-PI or the user is an employee
of an Enterprise deploying the IdP-PI). As such, the User
is assumed to be using a traditonal Internet identity (e.g.
alice@gmail.com) that is well known.

To join the permissioned-group the User sends the request
to the IdP-PI that manages the permissioned-group of interest.
The User must perform a number of steps to become a
member:
• User obtains the Membership Verification Public Key:

The User must obtain KMV PK from the IdP-IP using
a secure channel, with mutual authentication (e.g.
using their respective public keys KPI and Kuser).
The Membership Verification Public Key is shown in
Equation 2 in Appendix A.

• User validates the Membership Verification Public Key:
Prior to using some of the parameters in the key the User
must verify that these parameters are formed correctly.

• User generates commitment parameters: The User
employs some of the parameters in the Membership
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Verification Public Key to create his/her own commitment
parameters that “blinds” the User’s own secret keying
material. (See Equations 4 and 5 in Appendix A).

• User sends commitment parameters to the IdP-PI: The
User sends the commitment parameters to the IdP-PI,
who in-turn must verify that these parameters are formed
correctly.

In requesting membership to the IdP-PI as the service
provider, the User may need to reveal his/her actual identity
in order to be admitted into the permissioned blockchain.
This process is external to the blockchain. Hence the User’s
personal public-key pair used to secure the download of
KMV PK and to upload the blinded commitment parameters

Although the IdP-PI may learn the User’s true identity (e.g.
for business purposes), a User must never reveal their personal
public-key pair or their identity to the IdP-PV entity.

In creating secure channels with either the IdP-PI or
IdP-PV the User must never use his/her transaction (Bitcoin)
public-key pair, as that would destroy the anonymity of the
transaction public-key pair.

[Step 3A] IdP-PI delivers Group-Member Keying Parameters
In this step, the IdP-PI generates a number of group-

member keying parameters that are specific to the requesting
User, based on the commitment parameters that the User had
submitted in the previous step.

[Step 3B] User Generates User-Member Private Key
Upon receiving the user-specific group-member keying pa-

rameters, the User uses these parameters to generate his/her
own User-Member Private Key, denoted as KUMPK . (See
Equation 6 in Appendix A).

It is worthwhile to note at his point that there is a Many-
to-1 asymmetric relationship between multiple User-Member
Private Keys and the single Membership Verification Public
Key (KMV PK) that was delivered from the IdP-PI to the IdP-
PV entity in Step 1. That one verification public key KMV PK

allows the IdP-PV verify all permissioned-group members (i.e.
Users) who wield their own respective User-Member Private
Key KUMPK

More specifically, if two Users U1 and U2 independently
presents a message with a signature-of-knowledge (see Equa-
tion 8) created using keys KUMPKu1 and KUMPKu2 respec-
tively, then the Permissions Verifier IdP-PV can verify both
signature using the one verification public key KMV PK but
it will not be able to distinguish between Users U1 and U2.
Indeed, it is this very feature found in the DAA scheme [5]
that motivated the adoption of the DAA scheme for privacy-
enabling the TPM hardware.

As part of this step, the User has to choose a base parameter,
which can be a random base or a named-base (See Equations 4
and 5 the Appendix). In choosing between the random-based

or named-based approaches, there is essentially a trade-off be-
tween full anonymity (privacy) and convenience. The named-
based approach may be useful if several IdP-PV entities exist
and the User seeks to use the IdP-PV that he or she trusts.
The signatures from the User states (identifies) the identity
of the IdP-PV entity that the User seeks to use. However, in
this case the IdP-PV entities may build-up a correspondence
list between the EPID key used in the signature and the
transaction (Bitcoin) public-key, thereby somewhat reducing
the anonymity of the User in exchange for improved value
added services provided by the IdP-PV.

At this point onwards in the ChainAnchor protocol the User
becomes anonymous to the IdP-PI and the IdP-PV.

[Step 4] User Anonymously Proves Membership to IdP-PV
The anonymous membership verification protocol consists

of a number of sub-steps following the challenge-response
model. The User sends a request to the Permissions Verifier
(IdP-PV), and in-turn the IdP-PV challenges the User with
some parameters that the User must respond to.

In engaging the IdP-PV entity, the User must never use
his/her own personal public-key pair, as this would disclose
the User’s true identity.

In requesting the IdP-PV for an anonymous membership
verification, a secure channel with only one-way authentication
is required. That is, only the IdP-PV needs to prove its true
identity as a service provider. This is because the User must
obtain assurance that it is engaging the correct IdP-PV, and
not a bogus server masquerading as the IdP-PV. As such, the
secure channel between the User and the IdP-PV must use the
server-side certificate of the IdP-PV. (This is already common
everyday practice today by many service providers).

The sub-steps of the anonymous membership verification
protocol are as follows (Figure 3):

• Step 4.1: The User sends a request to the IdP-PV
for an anonymous membership verification. Although
unnecessary, depending on the implementation the User
may include a copy of his/her transaction public key
Kbitcoin.

• Step 4.2: The Permissions Verifier IdP-PV responds by
returning a challenge message m and a random nonce
npv to the User. Note that if the User is a bogus entity
or person, they would not have engaged the IdP-PI in
Step 2 and Step 3 with a unique (User-chosen secret)
commitment parameter. As such, a bogus user will not
be able to continue undetected by the IdP-PV beyond
the next step.

• Step 4.3: Upon receiving the challenge message m and
the random nonce npv from the verifier IdP-PV, the
User must compute a “signature of knowledge” of the
commitment parameter that the User supplied to the
IdP-PI in Step 2. The signature-of-knowledge is denoted
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as σ. (See Equation 8 in Appendix A).

As input into the signature-of-knowledge computation,
the User inputs:

– The User’s Membership Verification Public Key
(KMV PK) which the User obtained from the Per-
missions Issuer IdP-PI in Step 2. (See Equation 2 in
Appendix A).

– The User’s own User-Member Private Key KUMPK

which the User computed in Step 3. (See Equation 6
in Appendix A).

– The challenge m and the nonce npv obtained from
the Permissions Verifier IdP-PV.

• As part of the ChainAnchor protocol, the User must
sign the value σ using the User’s transaction private
key K−1bitcoin. The signature is denoted as SIGσ . The
User can use the signature algorithm that is already
built-in and deployed in the Bitcoin system (e.g. ECDSA
using secp256k1 curve). This provides a very simple
cryptographic binding between the User’s transaction
key-pair and the signature-of-knowledge proof σ.

• The User sends the following three values to the IdP-PV:

(σ, SIGσ,Kbitcoin) (1)

• The IdP-PV validates signature-of-knowledge σ, and
returns an acknowledgement of a successful verification
process to the User together with some parameters to

establish a pair-wise shared key (PSK) between the
User and the IdP-PV. The IdP-PV then adds the User’s
transaction public key Kbitcoin to the Verified Identities
Database.

• Step 4.4: The User and the IdP-PV engage in a key
agreement subprotocol that results in a pair-wise shared
key (PSK) denoted as kU,PV . This PSK is shared
between the User (who is anonymous throughout Step 4)
and the IdP-PV.

Equation 1 represents the cryptographic binding between
the proof of membership values and the User’s transaction
public key pair. Depending on the implementation of the
permissioned-group, the User could also send a batch of
transaction public keys (Kbitcoin1 ,Kbitcoin2 , . . . ,Kbitcoinj ) in
Equation 1 to the IdP-PV. However, this batch processing
approach may allow the IdP-PV to later track and correlate
transactions using these keys.

A further improvement can be made by the User including
the basename value in the signature sent to the Permissions
Verifier. This allows the User to choose the Permissions
Verifier that he or she trusts, several of which may exists at
any one time. This approach is taken the DAA-SIGMA key
exchange protocol [27], which embeds DAA within the key
agreement flows.

[Step 5] User Transacts on Permissioned Blockchain
In this phase the User transacts on the permissioned

blockchain in the usual manner (as in Bitcoin), using the
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transaction private-key K−1bitcoin to sign transactions.

[Step 6] Miner Processes Transaction
Following the normal Bitcoin transaction processing in the

peer-to-peer network, a Miner fetches a transaction (i.e. from
the pool of unprocessed transactions) and prepares to process
that transaction.

[Step 7] Miner Validates User’s Public Key
Prior to processing a transaction for inclusion into a block,

a Miner participating in the ChainAnchor permissioned-group
must check that the public-key found in the transaction
has been approved to participate in the permissioned-group.
That is, the Miner must first look-up the Verified Identities
Databases at the IdP-PV to ensure the public key is in the
database.

Miners who are not participating in the ChainAnchor
permissioned-group will be oblivious to this validation step
and will process the transactions in the usual Bitcoin way.

[Step 8] Miner Records Transaction
If the public key Kbitcoin used in the User’s transaction

exists in the Verified Identities Database, the ChainAnchor
Miner proceeds with processing the transaction (i.e. add
to block, perform proof of work, etc). Otherwise the
ChainAnchor Miner ignores the transaction. We discuss
mining and consensus further in Section IV.

D. Revocation of Lost or Stolen Keys

One of the major weaknesses – or strengths, depending
on one’s point of view – of Bitcoin is its lack of a key
management infrastructure that supports end-users revoking
keys which they suspect have been compromised or stolen.
When a Bitcoin private key is lost or stolen, there is the
danger that any Bitcoin currency associated with that lost
key will be stolen (i.e. currency transferred in a transaction
to another Bitcoin public key or address). Furthermore, the
decentralized and permissionless design of Bitcoin ensures that
there is no centralized authority or control. Consequently, there
is no entity in Bitcoin to whom a user can request or effect
the revocation of keys (i.e. keys that the User self-generated).
This weakness (strength) is a direct corollary of the anonymity
of the self-asserted (self-generated) key pairs in Bitcoin.

In a permissioned-group in ChainAnchor there is opportu-
nity for revocation services to be provided by the IdP-PI or
the IdP-PV entities depending on the type revocation required.
Currently we propose ChainAnchor to support two types of
revocations:
• Simple revocation (IdP-PV):

In the simple revocation, we assume that the User still has
a copy of their transaction public-key pair, but suspects
that the private key has been compromised (i.e. copied).
Here the User wishes to prevent further use of that trans-
action public-key pair in the permissioned blockchain.

The User sends a revocation-request message to the
Permissions Verifier (IdP-PV), which is signed using
the still-extant private key. Here the IdP-PV essentially
plays the role of a “Revocation Authority” (much in
the manner of X509 Certificate Authorities operate a
Certificate Revocation List (CRL) service [28]).

Note that the IdP-PV will only respond to revocation
requests from existing anonymous verified members (i.e.
Users whose transaction public-keys are already in the
Verified Identities Database).

• EPID-based revocation (IdP-PI):
The second type of revocation makes use of the underly-
ing EPID revocation mechanisms, where the Permissions
Issuer (IdP-PI) entity becomes the revocation authority
for the permissioned-group (since it was the IdP-PI who
generated and “published” the Membership Verification
Public Key in Step 1 and who provided the User with a
unique Group-Member Keying parameters in Step 3).

EPID supports three variants of revocations: (a) re-
vocation based on the User-Member Private Key, (b)
revocation based on the signature-of-knowledge that the
User computed in Step 4 above, and (c) revocations done
proactively by the Permissions Issuer who may suspect
that a User has lost their keying material which the User
had obtained from the Permissions Issuer (in Step 3A).

The reader is directed to Appendix A and to [2] for more
details on the EPID-based revocation variants.

E. Discussion

It is important to pause here to review what has been
achieved in binding the the transaction (Bitcoin) public-key
pair with the zero knowledge proof of membership:
• User remain anonymous to IdP-PV: It is important

to note that when the User requests the Permissions
Verifier IdP-PV for an anonymous identity verification
(in Step 4) the User employs one of the user’s self-issued
transaction public-key pairs. As such, the User remains
anonymous to the Permissions Verifier.

• User remain anonymous to IdP-PI: In requesting mem-
bership to the IdP-PI (in Step 1), the User most likely
may have used his/her own personal public-key pair and
therefore made known their real-world identity to the IdP-
PI.

However, after Step 3A the User becomes anonymous
even to the IdP-PI because the User injects a secret
parameter when generating the User’s User-Member
Private Key KUMPK (see Equations 4, 5 and 6 in
the Appendix). Since the IdP-PI is not involved in
Step 4 onwards, the IdP-PI has no knowledge of which
transaction public-key pairs are owned by the User.

• Simple binding to transaction key pair: We have used a
digital signature as a simple binding mechanism between
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the transaction public-key Kbitcoin and the proof of
membership (the value σ in Step 4). This is primarily
due the availability of the digital signature function
within the Bitcoin-core open source code. We note
that other more complex cryptographic bindings can be
also be applied, including the injection of the User’s
transaction key Kbitcoin as input into deriving the User’s
secret parameters (i.e. parameter f in Equations 4, 5
and 6 in the Appendix).

In the following sections we discuss the application of
ChainAnchor to fully private permissioned blockchains and
to “semi-private” blockchains – which we refer to as semi-
permissioned blockchains.

F. Deployment Modes

• Private Permisioned Blockchains:
In this deployment mode the blockchain is privately
run system that is separate from the permissionless
blockchain in Bitcoin. As such it may use its own
non-standard transaction protocol and/or block payload
format. ChainAnchor Users remain anonymous to each
other.

• Semi-Permissioned Blockchains (Overlay):
In this mode of deployment, ChainAnchor is deployed
as an overlay above the current permissionless public
Blockchain in the Bitcoin system (Figure 4). This mode
is discussed further in Section IV.

G. Transaction Processing Modes

Although a detailed discussion is beyond the scope of the
current work, we note that other modes of processing of
transactions can be used in ChainAnchor:
• Originator-only permissioned-transactions: The Miner

verifies that the originator of a transaction is a member
of the permissioned-group.

• Recipient-only permissioned-transactions: The Miner
verifies that the recipient of a transaction is a member
of the permissioned-group.

• Cross-ledger permissioned-transactions: Here the
originator and recipient of the transaction are members
of two different permissioned-groups, but are granted
the right to transact across the groups.

• Fully verified permissioned-transaction: Here the Miner
verifies that both the originator and recipient of the
transaction are members of the same permissioned-group.

In the remainder of the paper, we focus only on fully
verified permissioned-transactions that make-up permissioned-
blocks.

IV. THE SEMI-PERMISSIONED OVERLAY

An interesting and promising deployment mode for
ChainAnchor that does not require the creation of a separate
blockchain system with private nodes in the semi-permissioned
overlay.

Here ChainAnchor is deployed as an overlay above the
current public and permissionless Blockchain. The goal of the
overlay approach is not to create a separate chain, but rather
use the current permissionless Blockchain (in Bitcoin) to carry
permissioned-transactions relating to Users in ChainAnchor in
such a way that non-ChainAnchor nodes are oblivious to the
transactions belonging to a permissioned-group. We use the
example of the current Bitcoin blockchain as the underlying
blockchain due to the fact that today it is the only operational
blockchain that has achieved scale.

As mentioned before, we define a permissioned-block to
be a block of transactions where for each transaction the
originator and recipient of the transaction are members of the
same permissioned-group. That is, a verified permissioned-
block contains a set of permissioned-transactions.

A. Mining & Consensus

Mining and consensus over a block of permissioned-
transactions is achieved the same way as in Bitcoin
transactions. Indeed, permissioned-transactions are Bitcoin
transactions and have no difference. Validated blocks of
permissioned-transactions are added to the Blockchain in the
same way as validated ordinary Bitcoin blocks of transactions,
using the same protocols and mechanism (Figure 6). This
is one of the advantages of the semi-permissioned overlay
approach.

In Bitcoin a successful miner receives two types of rewards
for mining, namely new coins (created with each new block
of transaction) and transaction-fees (from the User/originator)
related to each transaction included in the block.

In ChainAnchor a successful miner receives a further ad-
ditional reward for completing a block consisting only of
permissioned-transactions (Figure 5). Being a participant in a
ChainAnchor permissioned-group, the miner can look-up the
Verified Identities Database to check if both the originator and
recipient are members of the same permissioned-group. As
such, the miner can be selective in choosing transactions to
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process and prioritizing permissioned-transactions with higher
rewards over ordinary transactions.

Note that to a plain Bitcoin mining node (i.e. not
participating in a ChainAnchor permissioned-group) a block
of permissioned-transactions looks no different than ordinary
Bitcoin transactions. A plain Bitcoin node may be oblivious
to the fact that a transaction originated from (and destined
to) Users who are participating in a permissioned-group. The
plain mining node will not know to look-up the Verified
Identities Database at the IdP-PV.

B. Block Validation by IdP-PI and IdP-PV

The in semi-permissioned overlay, both the Permissions
Issuer entity (IdP-PI) and Permissions Verifier entity (IdP-
PV) are full-nodes on the underlying Blockchain. This means
that although they do not perform mining for rewards, they
must validate all blocks of transactions and keep a copy of
the validated blocks (the blockchain) themselves. This ensures
they can be independent from other nodes on the network.

In addition to independently validating all blocks in the
usual Bitcoin manner, IdP-PI and IdP-PV entities have ad-

ditional steps that they need to perform. For every block of
transaction they validate they must also pick-out those which
are permissioned-blocks:

• Validate permissioned-blocks: Verify that each transaction
in a validated block is a permissioned-transaction. If
this is true, this means that the block is in fact a
permissioned-block. For such permissioned-blocks, the
IdP-PI and IdP-PV may take note as to their location in
the Blockchain.

• Identify Miner of permissioned-blocks: For a validated
permissioned-block, IdP-PI and IdP-PV must verify
that the successful Miner’s public-key is found in the
Verified Identities Database. That is, they both must
ensure that the Miner has executed the zero knowledge
proof protocol with the IdP-PV prior to mining for
ChainAnchor permissioned-transactions.

This last step is needed in order for the Miner to be
remunerated by the Owner of the permissioned-group through
the IdP-PI.

C. Preventing Collusion: Multiple Permisions Verifiers

The business objective of the Permissions Issuer and
the Permissions Verifier is to realize the execution of a
permisisoned-group on behalf of the paying Group Owner. As
such, it is in the interest of the IdP-PI and IdP-PV to ensure
that only Users that have been authorized by the Group Owner
get access to the permissioned-group.

However, given that Users and Miners are anonymous and
that they are recognized only through the presence of their
transaction public-keys in the Verified Identities Database,
there is the possibility of Users or Miners colluding with the
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IdP-PV to get their public-keys listed in the database without
previously performing the zero knowledge proof protocol.

To counter such a scenario, the Permissions Issuer has the
option of engaging multiple Permissions Verifiers in relation
to the same permissioned-group. Each Permissions Verifier
would therefore build-up its own version of the Verified
Identities Database which is read-accessible to the IdP-PI. This
allows the IdP-PI to check multiple independent databases, and
detect inconsistent entries.

In this configuration, a User or Miner must execute a zero
knowledge proof protocol separately to each IdP-PV entity.
In each case, the Use/Miner must use different parameters
for their Commitment values (Step 2 of Section III-C) and
the generation of their User-Member Private Key KUMPK

(Step 3 of Section III-C). However, in each case he or she
must bind the same transaction public-key (Kbitcoin) to each
of the IdP-PV entities respectively. This ensures that the same
transaction public-key will be listed in each of the distinct
databases respectively.

D. Discovery of Permissioned-Groups

Information regarding the existence of a permissioned-group
at the IdP-PI must be made known by the IdP-PI to potentials
Users and Miners. The precise mechanism is out of scope
for the current work, but it should carry enough identifying
information to allow a User or Miner to identify the desired
permissioned-group and to request membership (Step 2 of
Section III-C). Some of these information may include:
• Group ID: This is the identity (e.g. GUID) of the

permissioned-group. This value may be meaningful only
to members of the permissioned-group.

• Identity and address of the IdP-PI & IdP-PV: This is
the identity (e.g. X.509 certificate) and possibly the
transaction public-keys of both entities. Note that the
IdP-PI and IdP-PV are not anonymous entities, and must
be well known legal entities in order to obtain trust by
their customers (namely the Group Owners).

Additional authentication and authorization mechanisms
maybe implemented by the Identity Provider function of the
IdP-PI. These are external to the Blockchain and will be
deployment-specific.

Similarly, the reward fee for completing a ChainAnchor
permissioned-block must be advertised out-of-band by the
Permissions Issuer entity (IdP-PI) to ensure that Miners
participate in mining permissioned-blocks.

E. Remuneration for Miners

In the ChainAnchor semi-permissioned overlay a successful
miner receives a further additional payment (beyond the new
coins and transaction-fees in Bitcoin) for completing a block
consisting only of permissioned-transactions. This additional

fee is paid by the Permissions Issuer (IdP-PI) on behalf of the
Owner of the permissioned-group.

If the IdP-PI rewards the miner using Bitcoins, this act
will be visible to other members of the permissioned-group
by looking at the underlying Blockchain (ie. search through
confirmed transactions). Note that the transaction public-key of
the IdP-PI is known to all members of a permissioned-group.

Although outside the scope of the current work, a less strict
approach can be used for the block of transactions where a
block is permitted to carry both ordinary Bitcoin transaction
and permissioned-transactions. In this case, the reward for
the a successful miner may be computed as a “pro rata”
proportional to the number of permissioned-transactions in the
block.

Finally, the semi-permissioned overlay mode of deployment
maybe attractive to organizations who seek to run their own
permissioned-group but who do not wish (or cannot afford)
to deploy their own private blockchain consisting of a private
peer-to-peer network of nodes.

In this mode of deployment, the private organization (as
the owner of the ChainAnchor permissioned-group) can set
their own reward structure for participants in the permissioned-
group. If the reward for mining a permissioned-block is
considerably higher than the reward of mining an ordinary
Bitcoin block, a miner may opt to solely process permissioned-
transactions. A miner may in fact participate in multiple
permissioned-groups simultaneously, thereby increasing the
overall income from mining these various permissioned-blocks
of transactions.

V. CONCLUSIONS & FURTHER WORK

In this paper we have proposed the ChainAnchor system
that allows a User (i.e. holder of a transaction key-pair) to
prove anonymously that the User is a member of a permis-
sioned blockchain, and therefore have his or her transactions
be processed and be added to the permissioned blockchain.
ChainAnchor adds an anonymous identity verification step
using the EPID zero-knowledge scheme [2] to a permissioned
blockchain that limits access to the blockchain only to verified
members.

In the anonymous identity verification, the User has to also
cryptographically “bind” his or her transaction public-key to
the zero-knowledge proof sent to Permissions Verifier. This
results in that transaction public-key being recognized as a
valid “identity” that has obtained permission to transact on
the blockchain. The Permissions Verifier adds the approved
transaction public-key to a Verified Identities Database op-
erated by the the Permissions Verifier. Similarly, a Miner
who wishes to participate the permissioned-blockchain must
perform the same anonymous identity verification process with
the Permissions Verifier.

The database only contains transaction public-keys and the
time-stamp of the successful zero-knowledge proof protocol
completion. No other identifying information is stored by the
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Permissions Verifier. Similarly, a Miner (mining node) who
wishes to participate in ChainAnchor must perform the same
zero-knowledge proof process and have its public key be added
to the database. For each permissioned-group corresponding
to a permissioned blockchain there is one distinct Verified
Identities Database.

We suggest two modes of deployment, with differing possi-
ble incentive models. In the first deployment mode – namely
the private permissioned blockchains – the ChainAnchor
blockchain is a privately run system that is separate from the
public permissionless Blockchain in Bitcoin. This is equivalent
to a fully private blockchain, where a private organization
operates all nodes of a private peer-to-peer network.

In the second deployment mode – called the semi-
permissioned overlay – ChainAnchor is deployed as an overlay
above the current permissionless public Blockchain in Bitcoin.
The goal of the overlay approach is not to create a separate
chain, but rather use the current permissionless Blockchain to
carry permissioned-transactions relating to Users in ChainAn-
chor in such a way that non-ChainAnchor nodes are oblivious
to the transactions belonging to a permissioned-group. Mining
and consensus over a block of permissioned-transactions is
achieved the same way as in Bitcoin transactions. Additional
reward is given by the IdP-PI to a miner that successfully
mines a permissioned-block.

The semi-permissioned overlay mode of deployment maybe
attractive to organizations who seek to run their own
permissioned-group but who do not wish (or cannot afford)
to deploy their own private blockchain consisting of a private
peer-to-peer network of nodes. In this mode of deployment,
the private organization (as the owner of the ChainAnchor
permissioned-group) can set their own reward structure for
the permissioned-group.

If the reward for mining a permissioned-block is consider-
ably higher than the reward of mining an ordinary Bitcoin
block, a miner may opt to solely process permissioned-
transactions. A miner may in fact participate in multiple
permissioned-groups simultaneously, thereby increasing the
miner’s overall income.

The current design of ChainAnchor fulfills the objectives
set at the start of the current paper. These objectives include
retaining the same degree of anonymity as is currently
provided for in Bitcoin, providing anonymous permission
verifiability, and achieving functional independence from the
current Blockchain in the Bitcoin system.

Looking ahead, there are number of features or aspects that
we plan to address:
• Cross-ledger permissioned-transactions: The case of

cross-ledger transactions is one where the originator and
recipient of the transaction are members of different
permissioned-groups, but are granted the right to transact
across different groups.

There are several interesting deployment scenarios
for ChainAnchor cross-ledger transactions. Examples in-
clude different fiat currencies that are legally exchanged

with Bitcoin, and where a separate permissioned-group
is established for each fiat currency. The Permissions
Issuer entity could be implemented within an existing
regulated financial institution (e.g. Bank), while one or
more Permissions Verifier entities could be realized by
the emergent Bitcoin Exchanges.

• Support for Anonymous Attribute-Groups in IdP:
ChainAnchor allows a user to prove that he or she is
a member of an attribute-group – which is simply a
permissioned group whose members are users who posses
a given attribute (also called assertions in SAML2.0 or
claims in OpenID-Connect).

The User must obtain evidence of an attribute (e.g.
“Residence of Massachusetts”, ”Age over 18”, etc) from
external sources or attribute authorities (e.g. bank, trans-
portation authority, school, etc). The User then presents
these assertions to the Permissions Issuer (IdP-PI) entity
when the User seeks to obtain the group-member keying
material from the IdP-PI. The User can proves to the
IdP-PV that he or she is a member of the “Age over 18”
group.

This approach – though much less sophisticated
than the approach in [23] – provides a practical
on-ramp for Identity Providers who wish to support
anonymous attribute-groups without departing from the
ChainAnchor/EPID scheme.

• RESTful design for zero-knowledge proof protocol: We
plan to address the issue of implementing the EPID zero-
knowledge proof protocol within a RESTful exchange.
This would allow ChainAnchor to be deployed using
different transport protocols (e.g. HTTP, CoAP, et).

• Support for Anti-Money Laundering (AML):
ChainAnchor in the semi-permissioned overlay mode can
be used for AML purposes. This feature may be attractive
to concerned citizens who may wish to see Bitcoin grow
over time but who may wish to reduce the amount of
laundered currency or value passing through the Bitcoin
network.

Here ChainAnchor could be used to establish a
permissioned-group for “verified” (AML-friendly) and
“unverified” transactions. Using ChainAnchor members
of the AML-friendly permissioned-group can remain
anonymous but have the option to voluntarily disclose
their identity when legally challenged regarding suspi-
cious transactions. This means disclosing the link be-
tween their Internet identity (as known by the Permissions
Issuer entity) and their transaction (Bitcoin) public-key.
Such legal challenges should come from the appropriate
financial authorities.

Note that when a user discloses one of their
ChainAnchor anonymous public-keys it does not affect
the user’s remaining undisclosed anonymous public-keys,
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so long as these public-keys were bound to distinct
instances of the anonymous zero-knowledge proof
protocol exection (even if these distinct executions were
for the same permissioned-group).

APPENDIX A
SUMMARY OF EPID

The EPID Scheme consists of a number of protocols or
phases leading to a user proving his/her membership in a given
group. In the following we summarize the RSA-based EPID
scheme as defined in [2].

A. Issuer Setup

In order to create a group membership verification instance,
the Issuer must choose a Group Public Key) and compute a
corresponding Group-Issuing Private Key).

For the Group-Issuing Private Key the Issuer chooses an
RSA modulus N = pNqN where pN = 2p′N + 1 and qN =
2q′N + 1 and where pN , pN , p′N and q′N are all prime.

The Group Public Key for the particular group instance will
be:

(N, g′, g, h,R, S, Z, p, q, u) (2)

The Group Issuing Private Key (corresponding to the Group
Public Key) is denoted as:

(p′N , q′N ) (3)

which the Issuer keeps secret).
In order to communicate securely with a User, the Issuer

is assumed to possess the usual long-term public key pair
denoted as (KI ,KI

−1), where KI is publicly know in the
ecosystem.

Any User who has a copy of the Group Public Key
(N, g′, g, h,R, S, Z, p, q, u) can verify this public key by
checking the following:
• Verify the proof that g, h ∈ 〈g′〉 and R,S, Z ∈ 〈h〉.
• Check whether p and q are primes, and check that q |

(p− 1), q 6 | (p−1)q and uq ≡ 1 (mod p)
• Check whether all group public key parameters have the

required length.

B. Join Protocol: User and Issuer

In the join protocol, a given User seeks to send to the Issuer
the pair (K,U) which are computed as follows.
• The User chooses a secret f and seeks to convey to the

Issuer a commitment to f in the form of the value U .
• The value U is computed as

U = RfSv′ (4)

where v′ is chosen randomly by the User for the purpose
of blinding the chosen f .

• Next the User computes

K = BI
f (mod p) (5)

where BI is derived from the basename of the Issuer
(denoted as bsnI ).

The goal here is for the User to send (K,U) to the Issuer and
to convince the Issuer that the values K and U are formed
correctly.

In the above Equation 5, a User chooses a base value B and
then uses it to compute K. The purpose of the (B,K) pair
is for a revocation check. We refer to B the base and K as
the pseudonym. To sign an EPID-signature, the User needs to
both prove that it has a valid membership credential and also
prove that it had constructed the (B,K) pair correctly, all in
zero-knowledge.

In EPID and DAA, there are two (2) options to compute
the base B:

• Random base: Here B is chosen randomly each time
by the User. A different base used every time the
EPID-signature is performed. Under the decisional
Diffie-Hellman assumption, no Verifier entity will be
able to link two EPID-signatures using the (B,K) pairs
in the signatures.

• Named base: Here B is derived from the Verifier’s
basename. That is, a deterministic function of the name
of the verifier is used as a base. For example, B could
be a hash of the Verifier’s basename. In this named-base
option, the value K becomes a “pseudonym” of the User
with regard to the Verifier’s basename. The User will
always use the same K in the EPID-signature to the
Verifier.

C. Issuer generates User’s Membership Private Key

In response, the Issuer performs the following steps:

• The Issuer chooses a random integer v′′ and a random
prime e.

• The Issuer computes A such that

AeUSv′′ ≡ Z (mod p)

• The Issuer sends the User the values (A, e, v′′).
Note that the CL-signature [4] on the value f is (A, e, v :=

v′ + v′′). As such, the User then sets his/her Membership
Private Key as:

(A, e, f, v) (6)

where v := v′+ v′′. Recall that f is the secret chosen by the
User at the start of the Join protocol.
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D. User proving valid membership

When a User seeks to prove that he or she is a group
member, the User interacts with the Verifier entity. This is per-
formed using the Camenisch-Lysyanskaya (CL) signature [4]
on some value f .

This can be done using a zero-knowledge proof of knowl-
edge of the values f , A, e, and v such that

AeRfSv ≡ Z (mod N) (7)

The User also needs to perform the following:
• The User computes K = Bf (mod p) where B is a

random base (chosen by the User).
• The User reveals B and K to the Verifier.
• The User proves to the Verifier that the value logBK is

the same as in his/her private key (see Equation 5).
In proving membership to the Verifier, the User as the prover

needs to send the Verifier the value

σ = (σ1, σ2, σ3) (8)

where each of the values are as follows:
• σ1: The value σ1 is a “signature of knowledge” regarding

the User’s commitment to the User’s private key and that
K was computed using the User’s secret value f .

• σ2: The value σ2 is a “signature of knowledge” that the
User’s private key has not been revoked by the Verifier
(i.e. not present in the signature revocation list sig-RL
(see section below on Revocations)).

• σ3: The value σ3 is a “signature of knowledge” that the
User’s private key has not been revoked by the Issuer
(i.e. not present in the issuer revocation list Issuer-RL
(see section below on Revocations)).

E. Revocations

The EPID scheme supports three (3) revocation schemes:
• Private-key based revocation (priv-RL):

The first is based on a revocation-list (RL) of the pri-
vate key belonging to the User. If a User’s private key
(A, e, f, v) (see Equation 6) is compromised, the User’s
f is then placed on the revocation list. As such, this
revocation scheme is referred to as the priv-RL revocation
scheme.

• Signature based revocation (sig-RL):
If a Verifier receives a signature from a User and
determines that the the User was compromised, the
Verifier places the (B,K) values of the signature on
the signature-based revocation list (where logBK is the
secret of the compromised User).

When a User seeks to prove that he or she is not
on the sig-RL revocation list, the User (with private key
(A, e, f, v)) needs not only to show that AeRfSv ≡ Z
(mod N) (see Equation 7), but also to prove that his/her
current value f (part of his/her private key) is not in the
sig-RL revocation list.

That is, his/her value f must be shown to be different
from logB̂ K̂, for every (B̂, K̂) pair listed in the sig-RL
revocation list.

• Issuer based revocation (Issuer-RL):
The Issuer-based revocation addresses the case where the
Issuer takes the proactive step of removing (i.e. revoking)
a User form a given group. The Issuer might do so, for
example, when it sees that a User has left the group (e.g.
no activity detected).

To revoke a User, the Issuer places the K value that
the User submitted to the Issuer (see Equation 5 in the
Join protocol) on the Issuer-RL revocation list. Note that
logBI

K is the secret of the revoked User
When a User seeks to prove membership, he/she

must prove that their secret f is not on the Issuer-RL
revocation list. That is, the User must prove that their
f is different from logBI

K̂ for each K̂ present in the
Issuer-RL revocation list.
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